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1. Introduction 

One of Roger Penrose's key ideas has been that complex analysis, with 
its in-built rigidity, should somehow encode the laws of  physics. The Penrose  

transform between complex analytic cohomology on CP 3 and zero rest mass free 
fields and the non l inear gravi ton description of self-dual metrics best illustrate 
the power of  this viewpoint. Both have led to interesting mathematics. The 
Penrose transform can be set up for any semisimple Lie group [6], and the 
natural higher dimensional analogue of  self-duality is a quaternionic manifold 
[28,4]. In this paper I shall show how to use the Penrose transform on 
quaternionic manifolds to suggest analogues of the Dolbeault complex in 
holomorphic geometry, following some ideas of  Simon Salamon. 

There are two rather complementary points of view to adopt in complex 
analysis. On the one hand there is the Weierstrass school, which defines holo- 
morphicity in terms of  analysis, via the convergence of  Taylor series. On 
the other, associated with Cauchy and Riemann, holomorphicity is defined 
differentially, via the Cauchy-Riemann equations. In seeking a naive theory 
of quaternionic analysis, it is well known that the Weierstrass route is unin- 
teresting. For if q = t + i x  + j y  + k z  then each of  t , x , y , z  is a function 
of  q and not ~--for  instance 4t = q - iq i  - j q j  - k q k - - s o  any quaternion 
valued real analytic function on ~4 has a convergent quaternionic power se- 
ries and vice versa. In other words, Weierstrass quaternion analysis is the 
same as the study of analytic functions on R '~. This led Fueter, in the 1930's, 
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to propose that quaternionic analysis should depend on the kernel of the 
Cauchy-Riemann-Fueter  operator: 

0 def ( 0  i O "  0 J~--~) 
~u, , - ~  ~u = ~t + ax  + J-~y + k ~u. (1) 

Now write ~, = (~'0,,~uv), identifying H = C 2, and represent i , j , k  by the 
usual Pauli matrices. Then (1) may be rewritten in matrix form: 

( O/Ot + iO/Ox i O / O y -  O/Oz 
qJ~-----~ k, iOlO) +O/Oz  O l O t - i O / O x )  (~u0,).q/,, (2) 

Thus, as Simon Salamon has pointed out, Fueter's operator is in fact the well 
known Dirac-Weyl operator acting on spinors over •4. Fueter's quaternionic 
holomorphic functions amount to massless, right-handed neutrino fields, in 
physical terms. As such, it is amenable to study by twistor methods, since 
these interpret such fields as holomorphic sheaf cohomology groups on twistor 
space. This interpretation is via a construction known as the Penrose transform, 
which is now very well understood, particularly from the point of view of 
representation theory [6 ]. 

Such a study is the purpose of this paper. Quaternionic geometry in four real 
dimensions is the study of conformal geometry, augmented by anti-self-duality 
assumptions. This is rather a special case, and anyway already exhaustively 
studied. So attention will focus on eight and higher real dimensions. Precisely, 
following ref. [28], a (real) quaternionic manifold M is real 4n dimensional 
manifold with a reduced structure group Sp(1 )GL(n,H)  admitting a torsion 
free connection V. An invariant analogue of the Fueter operator is defined 
as follows. The reduction of the structure group means that the complexified 
tangent bundle 

TMc ~ H ® E ~ T*Mc = H * ® E * ,  (3) 

where H and E are complex vector bundles of rank 2 and 2n, respectively. 
L = A2H is a natural line bundle on such a manifold, an analogue of the 
bundle of  conformal densities in four dimensions. ~u is a section of H* ® L* 
and the Dirac-Fueter operator is the composition 

F" H * ® L *  v T*Mc®H* ®L* ~ E*® (L*) 2. 

In index notation, which we shall use throughout the paper [27,1 ], 

V/A, ~ V.41.4' ~B'I. 
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The weighting of  ~ by tensoring in L" makes the Dirac-Fueter operator an 
invariant of the factorization (3). Indeed, it is then an invariant of this fac- 
torization and the torsion free requirement on ~7 and not otherwise dependent 
on ~7. 

In complex analysis the Cauchy-Riemann operator begins the Dolbeault 
complex which is locally exact. Holomorphic cohomology is the extent to 
which it is not globally exact. The main result of  this paper is to study 
a quaternionic analogue of cohomology obtained by similarly extending the 
Fueter operator to a locally exact complex. We shall do this using certain 
complexes (due to Bernstein-Gelfand-Gelfand) in representation theory, the 
Penrose transform and the twistor theory of quaternionic manifolds. We shall 
see that there is a whole family of related complexes, one for each semiregular 
orbit of the Weyl group of  sl(2n + 2, C), each of  which might be a Dolbeault 
analogue. There is one amusing complication. Most involve second order 
operators; this occurs even for the complex extending the Fueter operator. 

Suppose now that V is a quaternionic bundle on M; thus V is equipped 
with a self-dual connection. Equivalently, V is the Ward transform of a 
holomorphic vector bundle on quaternionic twistor space. We may couple 
the connection to the operators in the complex and so define the quater- 
nionic cohomology of  V. The twistor approach makes it possible to compute 
the index of  this cohomology, via the Hirzebruch-Riemann-Roch (HRR)  
theorem on twistor space. The simplest formulae occur on a hyper-K~ihler 
manifold M, when the index of  these complexes, coupled to V is a multi- 
ple of [ch(V) t d ( E ) ]  [M].  In other words, the HR R  theorem descends to a 
quaternionic analogue. Salamon has found similar formulae by relating the 
complexes to a Dirac operator. 

One possible application of such an idea is to a quaternionic analogue of  
geometric quantization. Let G be a complex Lie group and T be a complex 
torus of G. Then G/T is known to be hyper-K/ihler, in several ways, each 
invariant under the left action of a compact real form of G [22]. It should 
be possible to obtain hyper-K~ihler structures invariant under a non compact 
real form GR. Then the quaternionic cohomology of  the complexes presented 
here will be representations of  Gn. The orbits of GR on G/T are resolutions of  
nilpotent coadjoint orbits and so there is a chance that these resolutions bear 
some relation to unipotent representations [30]. 

All of  the constructions in this paper really only depend on the factorization 
(3) and the requirement that TM admit a torsion free connection; it is 
unnecessary, for instance, to suppose that a compatible metric is given (i.e., 
to reduce to Sp(n) on the second factor). Indeed, for algebraic simplicity it 
will be easiest to work over C, rather than R. This also allows the Penrose 
transform to be given in its simplest form (via a double fibration). A real 
quaternionic manifold is analytic, since its twistor space is holomorphic, so 
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it is sufficient to establish the existence and local exactness of  quaternionic 
complexes holomorphically. Actually, as Eastwood has pointed out, once the 
complexes are established in the analytic category, they hold in the smooth 
category, by the work of  Nacinovich [25 ]. 

One feature of  this paper is that it relies a good deal on recent work in the 
theory of  Lie algebras, particularly on the structure theory of  Verma modules. 
Readers unfamiliar with this work should consult ref. [6]. Similar methods 
are used in refs. [4,5 ]. 

2. Local twistor theory 

We shall rely heavily on the local twistor theory [ 1,4,10,27 ] of a quaternionic 
manifold. Reference [4] places quaternionic manifolds in the context of  a 
much wider class of  manifolds, modelled locally on Hermitian symmetric 
spaces. The common thread is the idea of  second order structures based on 
semisimple Lie groups [23,26] and one way to study them is via jet bundles 
and Cartan normal connections. An alternative, convenient and instructive 
method is to extend original ideas of  Penrose, showing that the existence of  a 
particular kind of  G0-structure Q c F ~ (M) on a manifold leads to an uniquely 
defined connection on an auxiliary bundle. Interesting differential geometry 
arises when we study the integrability of  this connection. Full details are given 
in ref. [4] and particularly in ref. [1 ], in index notation. See also ref. [24, p. 
51 ] and refs. [ 16,17 ] for similar ideas based on conic structures. 

2.1. COMPLEX QUATERNIONIC MANIFOLDS 

In the quaternionic case we could set Go = Sp (1 )GL(n ,H) ;  but since 
our considerations are purely local and for algebraic simplicity, we shall 
instead complexify and let Go = S(GL(2,C)  x GL(2n, C)).  Thus M is now 
a complex manifold and we are studying a G0-structure on O = Tl,°M, i.e. 
a Go~Z2 principal subbundle Q of the bundle of  holomorphic frames on M. 
Nothing is lost in doing this and we gain a clearer insight into the underlying 
representation theory as a result. Reality conditions are easily imposed later 
on. We adopt the convention that the Lie algebra of a Lie group is denoted 
by the corresponding bold face lower case letter. 

At the level of Lie algebras, go is the reductive Levi factor of  a maximal 
parabolic subalgebra p = go~g~ c g where g~ is Abelian and g = sl (2n + 2, C). 
We can find an Abelian complement g-l  of  p so that [gi, gj] c gi+j (setting 
g+2 = 0). Then the adjoint representation of  go on g-l  is the one through 
which the structure on O is defined. This is simply the tensor product of  the 
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self-representations H, F o f  the factors o f  Go and so O is a tensor  product  

0 = H ® E ,  (4) 

modifying the notat ion o f  ref. [28] slightly. Thus  if  I21 = T* I,°M then there 
is a splitting 122 = ~+2 ~ 1-2_2, into what may be called self- and anti-self-dual 
parts, where 

$'22+ = S 2 H  * ® ^2E*, I22 = A2H * ® S 2 E  *. 

The "S "  in Go means that addit ionally we are given a fixed isomorphism 
d e t H  ~ d e t E .  We shall denote  this bundle by O[1 ] ;  thus O [ p ]  -~ ( d e t H ) C  

We shall be interested in other  irreducible bundles built up f rom tensor 
products  o f  H,  E.  A handy notat ion,  in t roduced in ref. [6],  specifies a bundle  
by specifying the lowest weight o f  an inducing representation. This  notat ion 
will be crucial below, so we shall briefly review it. Fix a Cartan subalgebra 
h c g, a system S = { a i }  of  simple roots and let {2i} be dual the basis of  
fundamental  weights. The  weight 2 = E tli,~i is denoted  by writing ni over  
the ith node in the Dynkin  diagram of  g - - the  second node is crossed through 
to record the Dynkin  diagram of  go- The  same diagram represents the bundle 
over M induced by the representat ion of  go o f  lowest weight - 2  which we 
also denote  by 0 ( 2 ) .  Thus  

p q r s t 
-_ × e . . .  _- _= _ - - o  r r ~ , o -  r~, ,~r_~,~pn~gLr, . . . ,s , tL~gt. . , tql  :~t~t),'''" 

where Yr,...,s,t is the Young symmetr izer  

2 n -  1 t 

2; 

V 
r 

Here, p, q, r . . . . .  s, t are all integers---over R, q may be any real number,  though 
the complexes below only occur  for q integral. It is easy to check that 

0 0 0 0 0 I 0 -I I 0 0 
E =  _- x -- o - - -  _- _" , E * =  _- × . . . . . .  , 

I 0 0 0 0 0 1 --I  0 0 0 
H =  -_ × _- - . . .  _- _- , E * =  _- × . . . .  _- _- , 

0 2  o -3 2 o o 2 --3 0 I 0 0 ~ 2  __ . . . . .  

A 2 / ~  _-- 0 0 0 0 1 0 j 0 0 0 0 
"- x "- . . . .  : - , S J H =  : "x • . . . . .  , 
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Fig. 1. Quaternionic Hasse graph, i j  represents x O. 

\ 

2n,O 

2 n +  1 "% 

• 2 n +  1,0 

2n + ] ~x, / 1  

2 n +  I , I  

, / 2  

and so forth. 
The standard flat model for all o f  this is the Grassmanian Gr2 (c2n+2); H* 

is the tautological bundle and E the quotient bundle. The case n -- 1 is the 

Klein quadric and, since S (GL (2, C) x GL (2, C) ) 2:1 CO (4, C), the flat model 
for four-dimensional conformal geometry. This is the original case studied by 
Penrose; it is slightly special and of  course much studied elsewhere so we shall 
suppose n _ 2 in the sequel. Also it is not really necessary to suppose that E 
has even rank, until a metric is required. 
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2.2. HASSE GRAPHS .AND DIFFERENTIAL FORMS 

35 

In general, 12J splits into a direct sum of irreducible components. To keep 
track of these components we shall use a directed graph called a Hasse 
diagram, which occurs in representation theory. There are several equivalent 
ways of describing this. For instance, it codes the topological structure of 
Gr2 (C 2n+2 ) via a Morse stratification in which each node represents a stratum 
and each edge a Morse flow between strata. Combinatorially, it is the coset 
space W p = Wg 0 \ Wg where W z = $2~+2 is the Weyl group of g and Wr, 0 = 
$2 x S~  is that of go- Recall that this has a natural length functional and 
Bruhat ordering--each coset has a unique minimal length representative, and 
so wn is a directed graph. If  ai is the reflection perpendicular to the ith simple 
root [i.e., the simple transposition (i, i + 1 )] set 

xij  = a2tr3.., triala2--- trj 

if 1 < j < i < 2n + 1, with Xo0 = id and -ri0 = ~tr3---ai ,  2 < i < 2n + 1. 
Then Wp = {xij}  is given in fig. 1. Directed edges are of the form 

Xi,j+ 1 

j + l  
/ 

i+1 
\ 

X i + l j  

Thus an arrow labelled i corresponds to fight action by ai on Wp. The length 
of xij is 1 (xij) = i + j - 1. This is the length of  the shortest path from x00 to 

xo. 
We can now say how to compute the irreducible summands of I2 m. Let 

p be half the sum of  the positive roots of g, and for any w 6 Wg and 
any weight 2 det'me w.2 = w (2 + p) - p. In terms of fundamental weights 
tri ~ n j 2 j  = Y~njkj  + ni(2i_ 1 --22i  + 2i+1). In other words, the j t h  simple 
reflection acts on a weight in our notation by adding the coefficient of  the j t h  
node to its neighbours and reversing its sign. 

LemlTl~ 1. 

~"= ~ O(xq.O).  
l(xij)=m 

Furthermore, the projection of the exterior differential d : O (xo.O ) ---, O(x~t.O ) 
is non-zero i f  and only i f  x i j  ~ Xkl in the Hasse diagram, n 

This is a more or less standard fact in representation theory, where the 
de Rham complex becomes a resolution of the trivial module due to Bernstein, 
Gelfand and Gelfand--see ref. [6, ch. 8] for details. 
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Example 2. To illustrate this we compute the summands of the three-forms 
for a quaternionic structure in six dimensions. The relevant elements of the 
Hasse graph in fig. 1 are 

X30  = 0"20"30" 4 a n d  x 3 1  = 0"20"30"1. 

Thus 

so that 

Hence 

4 - 3  1 1 2 - 3  2 2 
X30  p = - × - - and x 3 0 P  = • ": -- "- , 

3 - 4  0 0 1 --4 1 I 
X 3 0 .  p = = -.- _- - and X30 .  p = = ;.. - - • 

I2 3 = S 3 H * [ - 1 ]  + H * ® Y . E [ - 1 ] ,  

where Y is the Young diagram 

2.3.  G E N E R A L  R E S O L U T I O N S  

The general Bernstein-Gelfand-Gelfand resolution is a resolution of a finite 
dimensional g module. I f - i t  is the lowest weight of an irreducible module 
E(it) then there is a resolution 

0 ---, rE(it) --, 0 (2)  ~ 0 ( X 2 o . 2 )  ~ . . . - - .  

--~ . . .  "--* O ( X 2 n - l . Z n - 2 . 2  ) "--* 0 

O(x~j.it) 
/ (X,.i) = rn 

on Gr2(C2n+2). Again, non-trivial differentials are given by the edges of the 
Hasse graph. This is defined on a general M, but not a complex--failure occurs 
because of curvature. The differentials are invariant differential operators, with 
the same symbol as in the flat case [3,5]. Similar resolutions occur in the 
Penrose transform. 

2.4 .  L I E  A L G E B R A  C O H O M O L O G Y  

We shall be particularly interested in studying bundles over M induced from 
a representation of G restricted to Go. Let ~: be such a (finite dimensional) 
representation--the ones of most interest are the adjoint representation g and 
the self-representation T. Then 0: = ~)[]:i as a Go module and 

g;.  g=y c ~=~+j. (5) 
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For instance, -O- = E ~ H* = To @ TI. Let F, Fi be the induced bundles. As 
O, 121 are induced by g~:l, respectively, and g:v= are dual, by the Killing form, 
(5) yields a natural map 

O:Fi---*Fi_l®~ I, O f ( X )  = X . f .  

Extending 0 by the usual formula for an exterior differential we obtain a 
bigraded complex E p,q (5) = F_q ® 12p+q with 

O" E p'q ----+ E~ 'q+ 1. 

This has a natural adjoint [4,21,26] 

0 " "  E p'q ""+ E~ 'q-I 

and so a "Laplacian" [] = 0"0 + 00" and a natural Hodge structure [21 ]: 

E~ 'q = im0 ~ E~ 'q ~ im0*. 

II 
ker 0 n ker 0* = ker D. 

In fact, the cohomology E p'q of this complex is simply (the bundle induced 
by) the Lie algebra cohomology H* (g_1, F) given by Kostant's formula [21]. 
See ref. [4, table 1 ] for details. (Translate into the notation of that paper by 
observing E f  'q = n p+q'-q. We choose to bigrade E so that 0 becomes a vertical 
differential. A fiat connection V on Q may be added as a horizontal differential 
and the resulting double complex is extremely interesting in connection with 
invariant differential operators [ 5 ]. ) 

2.5. THE WEYL STRUCTURE ON M 

This is applied as follows. The torsion T of any Go connection V lies in 
O®£22 = El'l (g) and so OT = 0. I f V  = V + C is a second Go connection 
then C ~ El,°(g) and 7 ~ - T = OC. In particular, if C = OT, Tfi 12 I, then 
J~ = T. In the present case, E~ '° = 0 which yields 

Lemma 3. There is a distinguished family [V] of  Go connections on M for 
which O*T = O. Any two connections in this family differ by OT for some 
one-form T. The torsion T o f  any connection in this class depends only on the 
Go structure. [3 

Otherwise put, M admits a distinguished Weyl structure. The torsion con- 
dition becomes 
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(i) if n = 1 (four-dimensional conformal geometry) then T = 0 and 
(ii) if n > 2 then T is totally trace free, that is, a section of 

T E  3 -3 0 1 . . .  0 0 _ S 3 H , @ A 2 E C O @ ~ 2 2 + .  

The conformal case n = 1 is Penrose's non-linear graviton and is something of 
a special case. We shall suppose n > 2. Then M is (complex) quaternionic if 
and only if its invariant torsion vanishes. Notice how natural such a definition 
is in the context of Lie algebra cohomology. 

2.6. PRACTICAL CALCULATION 

For calculation purposes it is often useful to distinguish a special subclass 
of connections within this Weyl structure [1,4]. Then we may adapt Roger 
Penrose's two-component spinor notation. If in addition to O*T = 0 we 
require that Ve = 0 for a fixed section e of A2H * then V is completely fixed. 
For instance, a metric compatible with the quaternionic structure on M is 
a section g = e ® co of A2H*® A2E *. We may use the given isomorphism 
A2H * ~ A2nE * tO require also that e ~ co n. This fixes e and the corresponding 
V is simply the Levi-Civita connection. In the sequel we shall only work with 
such connections. Since we are concerned only with quaternionic structures, 
they are torsion free. If e -,-, ~ = xe then T = d log x. 

Following ref. [1, eqs. (13), (14)] and ref. [27, p. 242] decompose the 
curvature operator 2£2 = £2 + + £2- into self- and anti-self-dual components. 
In index notation, 

2VtaVo] = f"IABf-A'B, d- I-IA,B,AB. 

Then 
DABI zD = ( T t f f s c -  2Ac(AOff))ltC, 

' - B' A' I-'IAB]..ID = f].)ABA,/I , 

I-'IA,B,AB/.ID = 2J(A@BICA,O, IzC, 
D ~ D ~ DA,B,ABIt = --2A~86(A,/tn, ). 

(The reader unfamiliar with Penrose's spinor index notation should consult 
ref. [27]. These formulae make use of the isomorphism H - H* afforded by 
e. Thus /~a and / J  are a section of E and H, respectively, and indices are 
raised and lowered by #i '  = lZB'eS'A ', #A' = eA'B'ltS,.) 

Each component of the curvature appearing in these formulae is irreducible. 
Thus 

~IADBc E 0 - 4  3 0 0 I -_ × -_ . . . . . . .  ( E @ S 3 E ) ° [ - I ] ,  

¢I)ABA,B, E 2 - 4  2 0 0 0 _ S 2 H .  ® S 2 E . ,  "- X . . . . .  

AAB E eO -2.~ =0 . . . .  1 0 0 -- A2E * [ - 1 ] .  
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In particular, Ricci curvature  is given by 

Rab = --2~ASA,B, + 2(n  + 2)AABeA,B,. 

Thus 
1 A'B' 

AAS -- 4(n  + 2) RtAsl4'B'e " 

2.7. LOCAL TWISTORS 

The local twistor bundle on M is constructed by pushing out the first jet  
exact sequence of  E:  

E ® H *  ® E *  

II 

0--' ,  E ® I 2  l 

t r = 0 *  1 

0 --, H* 

_+ j l  (E )  ~ E ---, 0 

push 1 H 

T ~ E ---', 0. 

Any connect ion V on E provides a linear splitting E ~ j i  ( E ) - - t h a t  is 
simply the definit ion of  a connection.  Since 0 : H* ~ E ® £2 l, this means that 
V realizes T as a subbundle o f  j l  (E) .  Equivalently, V defines a first order  
linear differential equat ion on E,  the twistor equation 

Vto + On: = 0. (6) 

Here 09 is a section of  E and (6) is to hold for some n of  H*. Equivalently, 
the totally trace free part  (Vto) ° = 0. This is invariant  under  V -,~ V + OT, 
so T c j i  (E )  is uniquely defined by the Go structure on M. 

Equation (6) is overde te rmined  and leads to a connect ion on T: apply 
V, observe V0 + 0V = T and use O*T = 0 to obtain Vrc in terms of  to 
and curvature.  Restricting to a curve gives a well defined system of  ordinary 
differential equations and so a local twistor connection [ l ]: 

V = Vx + P . t o  

Here, P = - - I " l -10*~  ( ~  = V 2) is a section o f E 2 ' - I  (g) = ~1  @ ~ l ,  the first 

factor acting via gl : H -~ ~:. 0* effects a trace and D -I  acts by scalars, so P 
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is a reweighted linear combination of  the irreducible components of  the Ricci 
tensor [ 1 ]: 

Pab = ~ASA,S, - AASeA,S,. 

A straightforward calculation proves the following [ 1,4] 

Lemma 4. V depends only on the distinguished class [V] on M.  [] 

As an SL(2n + 2,C) invariant connection, ~7 has curvature 

1 2 + O P  T ) 
= T . P + V P I 2 + O P  " 

Lemma 5. I f  the invariant torsion T vanishes then ~9 is anti-self-dual and  takes 
values in End(E)  ~b gl. 

Proof. T = 0 and the structure equation c912 = VT [4, eq. (16)] gives 

0(.(2 + OP) = 0, 

whilst the definition of  P gives 

O" (.(2 + OP) = O, 

so that ~u = 12 + OP is a section of  E~'°(g) = ( E n d ( E ) ®  122) °. By the 
Bianchi identity, and the vanishing of  torsion 

O V P  = - V ~ .  

On the other hand, 0 intertwines the action of  Go, and it is a straightforward 
exercise to show that the G0-types in the self-dual part of  VP do not occur in 
V~ u. But E~ '-I = 0, so 0 is injective on VP. [] 

~u is therefore an invariant of  the quaternionic structure, playing the role of 
anti-self-dual Weyl curvature in four dimensional conformal geometry. 
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2.8. TWlSTOR SPACES 

Let ~ c F ( T )  consist of  those (unit volume) frames of 7- which extend 
frames of E °, so ~ is a P-principal bundle over M. Since such a frame gives 
frames of  H, E there is a natural map $ : ~ --, Q c F I (M).  The connection X7 
on F (7-) provides a horizontal subspace in TG which is canonically isomorphic 
to g_t via dck. Thus we have an isomorphism 

which is Ad-invariant under P and consistent with the identification of  p with 
vertical vector fields on ~. Such a structure is called a Cartan connection [20]. 
The point of  this construction is that O is the curvature of co and so is the 
extent to which 

oJ -I : g ---, F(~7, T•) 

is not a homomorphism of  Lie algebras. In the fiat case, M = Gr2(C2n+2), 
G = G and oJ is the (left invariant) Maurer-Cartan form. 

Let r c g be the parabolic subalgebra with Levi factor gl(n + 1), so 
G/R = CP n+t. Then A2(g_l  fq r)" induces I22 and (5) yields that tour I is 
a homomorphism of Lie algebras. This gives a foliation of ~. The quotient 
space by this foliation is the twistor space of M [28]. By making suitable 
convexity assumptions on M we can ensure that Z is a Hausdorff complex 
manifold. Our considerations will be purely local, so we can and shall assume 
that such conditions are met. They certainly will be if M is a small complex 
thickening of a real quaternionic manifold (which is necessarily analytic). 
Observing that G/P n R = P (H)  yields 

Proposition 6. A (suitably convex, complex) quaternionic manifold M has a 
twistor space Z related to M by a double fibration 

Z 

P(H)  

¢/ \ 

M. 

[] 

Our aim is to use this as the basis of a Penrose transform, from which 
we shall deduce the quaternionic complexes of interest. Since we are working 
locally, we shall assume that M is Stein and the fibres of  r/ are contractible 
[8], [6, section 7.1.21. 

We shall use the notation O r, Oq or O, to indicate induced bundles on M, 
P(H)  and Z, respectively. 
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2.9. THE PENROSE TRANSFORM 

The Penrose transform is explained fully in ref. [6, ch. 7-9]--see  also refs. 
[ 13,11 ]. It is a machine which identifies holomorphic cohomology on Z with 
solutions of  differential equations on M. In the flat case, the calculation is 
made easier by observing that the bundles of interest on Z c CP 2n+l are 
homogeneous, and then using of  techniques of representation theory. In fact, 
the same kind of  construction works in the curved setting, precisely because 
the fibres of  I/, z retain their homogeneous structure. There are several ways 
of  looking at this. The simplest conceptually is to consider "Z = ~/R" and 
define homogeneous bundles on Z to be bundles induced from representations 
of R-- the  fact that only some neighbourhood of the identity in R acts on a 
particular leaf in ~ is immaterial. It follows that all homogeneous bundles on 
~ 2 n + l  have analogues on Z.  Where necessary, these coincide with intrinsically 
defined bundles since 

Lemma 7. The holomorphic tangent bundle Oz on Z is the homogeneous bundle 
induced by g/r. 

Proof The Cartan connection 09 identifies T~g ~- g, so as a vector space, 
OgR ~ g/r. I f x  E g, let x* = o9-1x. Then [x*,y*] - Ix,y]* = ~ ( x * , y * )  
takes its values in the distribution og-lr, by (5). In particular, the action of r 
on g/r  via the Cartan connection coincides with its adjoint action. Q 

In particular, there are natural analogues of the Hopf  sheaves O(k) and 
g22"+1 -~ Oz ( - 2 n -  2) as on projective space. 

The key observation [2,12] is now that the full machinery of ref. [6], 
including the use of  relative Bernstein-Gelfand-Gelfand resolutions, applies 
in computing the cohomology of these sheaves. The quaternionic complexes of 
ref. [29] appear naturally in the spectral sequences computing H* (Z, 0 ( l ) ) .  

Fix rn 6 M and let Lm C Z be the corresponding projective line. Then 
restriction of cohomology to the formal neighbourhood of Zm corresponds 
under the Penrose transform to restricting fields on M to their Taylor series 
about M [6, p. 184]. It follows that such a restriction is injective, whenever 
the Penrose transform is valid. This gives a key vanishing 

Lemma 8. I f  M is Stein then Ht(Z,~ r) = 0 for l > 1 and any homogeneous 
sheaf .~. [] 
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3. Quaternionic complexes 

Perhaps the most basic differential operators on a quaternionic manifold, 
after the twistor operator, are the Dirac operators. The first of these is defined 
by 

0 --2 I 0 0 I --3 0 1 0 0 
D :  -_ × _.... ._ _ - - - ,  . :.. _. ._... _. _. 

II [I 
E * [ - I ]  H* ® A2E*[-1] 

~b¢ A I , ~ A,[A~IlB] 

which is readily seen to be a differential invariant of the quaternionic structure. 
There is a natural extension of  D. Define 

D:  S P H * ® A P + I E * [ - 1 ]  --. SP+IH* ® A p + 2 E * [ - 1 ]  

~A...BCA'.. .B' ~ VtA'IIA~B...CDIIB'...C'). 

We shall see in a moment that this is does indeed give a complex (a fact 
equivalent to the quaternionic (torsion vanishing) condition), which is the 
first and simplest of an entire series of complexes on a quaternionic manifold. 
It is exact, except at the left, where the kernel of the Dirac operator will be 
identified with first cohomology on twistor space. 

The second invariant Dirac operator is the Dirac-Fueter operator. Here the 
r61es of E, H are interchanged: 

F "  i - 2  0 0 0 0 --3 1 0 0 0 
~ " . - .  ~ "2- --"¢" -'2 , ~  -'2' -- - . .  -- 

II II 
n * [ - 1 ]  E* [ -2 ]  

A' gtA' ~ ' VA VA'. 

This may at first sight seem rather more simple than the first. Indeed, as 
explained in the introduction, it appears in the original work of Fueter where 
it is thought of as a quaternionic Cauchy-Riemann operator. On the other 
hand, there is no immediately obvious way of continuing F into a complex, 
by first order operators. There is, however, a natural invariant second order 
operator 

0 --3 1 0 0 0 0 --4 0 0 I 0 
z ~  " . ~ ~ "2_ . - -  -_ -_ ~ _" ) (  _-' ~ _'2' - - -  • 

II II 
E * [ - 2 ]  A3E* [ -3]  

given by 

A t 

~ll A ~ V A ,  I A V B  ~,llC l + 4 A I A B g t C l  

A' 1 , r A ' B ' D  . 
= ~ A , [ A V B  {I/c] -a t- - - c  I ,~A,B,[ABWC]. 

n + 2  
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This is a simple generalization of  the conformally invariant Laplacian A = 
v a x ~  a + 1R when n = 1, as we shall see in a moment .  Coupling this to 
operators 

D" SPH*®Ap+3E*[-3] ~ SP+IH*QAp+4E*[-3] 

Iff.4...BC.4,...B, i , V(A , I IA~B. . .CDI lB , . . .C ,  ) 

again yields a complex, exact except at the left, when M is quaternionic. 

3.1. TWO SI NG U L AR COMPLEXES 

The first complex is obtained by computing the Penrose transform of 
Oz ( - 1 )  = O,(-21 ), following the method in ref. [6, ch. 9]. Here 

-1  0 0 0 0 
-At = -- -- ----. e -- • 

Recall that this first involves writing down a relative Berns te in-Gelfand-  
Gelfand resolution: 

0 ~ F l - l O r ( - - , ~ l )  ~ O q ( - - , ~ l )  ~ O q ( - Z 2 . J .  1) 

. . . . .  O q ( - Z 2 n + l . 2 1 )  ----+ O. 

In this, Z/ = 020"3-..0/. Next we compute the direct images of  each resolvent 
along the pl fibres of  r : P ( H )  ~ M. For instance, O r ( - 2 t )  restricts to 
the standard O ( - 1 )  bundle along a r fibre so its direct images vanish in 
both degrees. On the other hand, each o f - Z / . 2 ~  is already p-dominant,  
so has Op(-Zt .2~)  as its non-trivial direct image, in degree zero. Thus the 
hypercohomology spectral sequence computing H* (Z, Oz ( -  1 ) ) degenerates 
to a single lowest row: 

0 0 0 . . .  0 

(.Qp(-Z2.J.) Op(-Z3.,~) . . .  Op(-Z2n+l .2)  

By the vanishing lemma 8 this row is a resolution of  H l (Z,  Oz ( - 1 ) ) .  Com- 
puting each Zt.2 shows that this is simply the complex begining with the Dirac 
operator, given at the start of  this section. In particular, the cohomology group 
is identified with the kernel of  the Dirac operator D. 

To see how the Fueter-Dirac operator is extended to a resolution, we 
compute H t (Z, Oz ( - 3 ) ) .  This yields a spectral sequence whose El term is 

Op(--x20.23) Op(--x21.). 3) 0 0 0 . . .  0 
0 0 O.Op(--x42.23) Op(--x52.23) . . .  Op(--X2n +1.23) 
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where 
0 0 I 0 0 

)13 = -- -- ---.- -- e 

is the third fundamental weight. Deriving once yields a second order operator 

Z~ " O p ( - - X 2 1 . , ~ 3 )  ~ O p ( - - X 4 2 . ) ~ 3 )  , 

which, again by the vanishing lemma, completes a resolution, of H ~ (Z, 
Oz ( -3 ) ) .  This is the second one above, begining with the Dirac-Fueter op- 
erator. Notice that the appearance of a second order operator in consequence 
of the need to derive the spectral sequence twice before it converges. 

The formula for A is obtained by using Cech representatives of relative 
cohomology classes. The calculation is an easy variant of that of the Laplacian 
given in ref. [6, section 9.2]. In this a trivialization of H is chosen; the only 
complication in the present case is that we cannot choose this to be covariant 
constant under V. This gives rise to the curvature term. 

Remark 9. In the hyper-Kfihler case, we may choose V to be flat on H. Then 
H may be locally trivialized by two covariantly constant sections and so the 
calculation of d2 operators in the Penrose transform is exactly the same as in 
the flat case. Indeed, the Ricci curvature of V vanishes, so all the invariant 
operators which occur take exactly the same form as in the flat case, when 
expressed in terms of V. 

3.2. F U R T H E R  S I N G U L A R  C O M P L E X E S  

By considering the Penrose transform of Oz ( - k )  for 1 ~ k we obtain a 
whole sequence of locally exact complexes on a quaternionic manifold. 

Thus extend the Dirac-Fueter operator to 

F . s k - j - 2 H * ® A J E * [ - 1  - j ]  , s k - j - 3 H * N A J + I E * [ _ k ]  

and A to 

by the formula 

A " A k - 2 E  * [ 1 - -  k ] - - - *  A k E  * [ - k  ] 

A t 

J " ~AB.. .C ~ V A ' [ A V B  glCD...E] + 4AIABgtCDI . . .E  • 

Proposition 10. Let 1 < k < 2n + 1. Then 

Bk " 0 ~ s k -ZH*[ -1]  L . . . L  A k - Z E * [ I - k ]  ~ AkE*[ -k]  
D D --~ . . . .  s Z n - k H  * [ - k  - 1 ] ~ 0 

is exact, except at the left, where it resolves H 1 (Z, Oz ( - k  ) ). 
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Proof. This follows from the E~ term in the Penrose transform for Oz ( - k )  
which is given by 

Xk-t,O Xk-t.~ . . .  Xk-LI,-2 0 0 0 . . .  0 
o 0 . . .  0 0 Xk+l , k_  2 Xk+2,k-2 . . .  - ' (2n+l ,k -2  

where we have written x for Op (--X.2k), tO save space. Elementary calculations 
confirm that these are the bundles in the given sequence and the single non- 
trivial d2 operator in E2, namely ,J, is obtained as before. The result is a 
resolution, by the vanishing lemma 8. [] 

Notice, for instance, that the complex for k = 2 begins with a second order 
operator. This is a direct generalization of the conformally invariant Laplacian 
in four dimensions, which is the case n = I. Thus 

A t 
H2(Z,  O z ( - 2 ) )  ~ {~bE O [ - 1 ]  [ (V,t,I,4Vz~ I + 4AAB)~b = 0}. 

All these complexes, with 1 < k < 2n + 1, are associated to singular weights 
for g. That is, each bundle occurring in the complex is indexed by a singular 
weight 2 in the Wg orbit of a singular weight, --2 k. Recall that a weight is 
singular if 2 + p is orthogonal to some root of g. Any singular weight is 
uniquely conjugate under the affine action of W x to some singular 2 with 2 + p 
in the closure of the dominant Weyl chamber, i.e. (2 + p,a)  > 0 for every 
positive root a. Equivalently, if 

then p . . . . .  t > -1 .  If exactly one of these, say the kth, is -1 then 2 is called 
semiregular for the simple root ak as are the weights in its affine orbit under 
Wg. The only weights in this orbit corresponding to homogeneous bundles 
on M are those in WP.2 and on Z are those in Wq.2, which are p- and 
q-dominant, respectively. 

There is a useful (and standard) algorithm [15,9] for determining which 
these are. Suppose 2 + p is orthogonal only to a k. (Thus the integer over the 
kth node of 2 is - l . )  Then a weight x.2 is of the desired form if and only if 
one of the edges incident on x E WP corresponds to left multiplication by trk. 
Thus an edge labelled k is attached to x. If so, xak.2 = x.2. 

Of course, a similar result holds for q. But the Hasse graph Wq is particularly 
simple, since it corresponds to a cell decomposition of some complex projective 
space: 

W q = {id, zl = trl . . . . .  z/ = O"10"2"' '0" 1 . . . . .  Z 2 n + l  }. 

It follows that there is a unique homogeneous bundle O, (Zk.2) on Z for each 
semiregular orbit. It is evident that the calculation of the Penrose transform 



R.J. Baston / Quaternionic complexes 4 7  

depends only on k, and not on the particular semiregular orbit associated to 
Ok. To be more precise, the two terms El,E2 in the Penrose transform for 
Or(Zk.2) will have the same form as those for O ( - k ) ,  with --)-k replaced by 2. 
One word of  caution: the differential operators and their degrees will change. 
Thus the Penrose transform yields an entire cone of  invariant resolutions 
locally on any quaternionic manifold. 

Theorem 11. Let 2 be weight for g satisfying 

= - I  i f i = k ,  
(2, at) > 0 otherwise. 

Then on a (suitably convex, complex) quaternionic manifold M (associated to 
g) with twistor space Z there is an exact sequence 

---, H I (Z, Oq (Zk.).)) --"  Op(Xk-1,0.2) "--' O p ( X k - i , 1 . 2 )  . . . .  

Op(Xk_l,k_2.2 ) ~-~ Op(Xk+l,k_2Jt) ---, Op(Xk+2,k_2.2) . . . .  

--, Op(X2n+l,k_2.J.) ---" O. 13 

Remark 12. There is an important distinction between zl and the other opera- 
tors in this complex. LI is an example of  a non-standard invariant operator and 
corresponds, in the case M is flat, to a particularly interesting homomorphism 
of (generalized) Verma modules. The theory of  Verma modules and their 
homomorphisms underlies much of  what is going on in the present paper. The 
relation between this theory and invariant differential operators is well known 
in representation theory. Geometers may consult refs. [3,4,14]. In particular, 
Enright and Shelton [ 15 ] have made a very full study of  semiregular categories 
of Verma modules in the Hermitian symmetric case. In the quaternionic case 
their results say that the semiregular Verma modules over p form a category 
equivalent to the regular projective category for CP 2n. This is reflected, for 
instance, by the fact that we have obtained complexes with a single irreducible 
in each degree, up to 2n. 

Remark 13. No interesting complexes arise by considering more singular bun- 
dles since any (integral) singular bundle on Z is semiregular. 

3.3. REGULAR COMPLEXES 

The Penrose transform of the canonical bundle Oz ( - 2 n -  2) ,  i.e. o f  k = 
2n + 2 above, has an Et term non-trivial only in the first row. Thus again one 
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obtains an invariantly defined complex, resolving H t (Z,  Oz ( - 2 n  - 2)) and 
involving only first order operators--it is given by setting k = 211 + 2 in the 
complex of  proposition 10. 

Now O z ( - 2 n -  2) = Oq(z2,+t.0) and so is associated to a regular affine 
orbit in the space of weights--0 + p lies within the dominant Weyl chamber. 
As far as the Penrose transform is concerned, it is the appearance of "z_,,+l" 
in this which counts. If it is any dominant regular (integral) weight then the 
Penrose transform of Oq(z2,+t.it) contains nontrivial entries in the first row 
only. Application of the vanishing theorem 8 again yields a resolution. 

Theorem 14. I f  it is a dominant  weight ./'or g and M, Z are as in theorem I I  
then there is an exact sequence 

0 ~ H t (Z, Oq(-2,,+l.it)) ---, Op(x2n+l ,o . i t )  ~ Op(X2n+l , l . i t )  

--, ... --* Op (x2,, + t,2,:.it) -~  0. [] 

In other words, each regular affine orbit of l,l,~ leads also to a resolution on 
quaternionic manifolds but of length 2n + 1. 

Remark 15, One can of course compute the Penrose transtbrm of any Oq (Zk.2) 
for it dominant. If k < 2n + 1 this will not lead to a resolution, as we readily 
see from the El term, which takes the form 

I Xko.O Xk.t . . .  Xk,k-t 0 0 . . .  0 (7) 
0 . . .  0 Y k + l .  k Xk+2, k . . .  Y2n+l,k 

(employing the convention that x stands for Op (x.it) again). If M is quater- 
nionically flat, the two possible non-zero d2 operators both give (non-standard) 
invariant differential operators. It is not clear what happens in general in the 
curved case, even for n = 1. 

There is actually a lot of interest in this situation. It is known that each 
standard invariant differential on a flat almost Hermitian symmetric mani- 
fold admits a curved analogue which has the same top order symbol and is 
obtained by adding curvature correction terms [4]. (In our context, the stan- 
dard operators are those appearing in the El term of the Penrose transform.) 
This is now known to be .false for at least one non-standard operator, namely 
(VaVa)3 on O [ 1 ] over a four dimensional conformal manifold [ 18 ]. In the 
flat case, this operator is obtained from the Penrose transform of Or(Zi . i t 2 )  , 

which is a particular case of (7). So it is reasonable to expect that further 
study of  these regular transforms should throw light on the question of curved 
analogues of  non-standard invariant operators. 
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4. Index of quaternionic complexes 

We now return to the real setting and suppose that M is a compact quater- 
nionic manifold. Then M is necessarily analytic, which follows from the 
existence of its twistor space Z,  and has a Stein neighbourhood in the com- 
plete family of lines in Z generated by the fibres of n : Z ~ M, which is 
complex quaternionic. 

A complex vector bundle I" on M will be called a quaternionic bundle if it 
is equipped with a connection whose curvature is self-dual, i,e. a section of 

S 2 E [ - I ] E n d ( I ' )  C ^2T*M ® End( l ' ) .  

V is thus tile Ward transform of a holomorphic vector bundle V on Z,  trivial 
on fibres of n and furthermore the connection on I" may be coupled to each of 
the quaternionic complexes given above. Note that I' is analytic and extends 
to a (sufficiently small) Stein neighbourhood of M as a holomorphic bundle, 
which has a holomorphic self-dual connection. 

This gives a variety of  possible definitions of  what one might mean by 
quaternionic cohomology on M. The first step is to relate this to cohomology 
on Z. For simplicity, we will restrict atention to the complexes of proposition 
I0, coupled to I'. The Penrose transform, applied to an appropriate limit of 
Stein neighbourhoods of M, then yields: 

Lemma 16. H i ( F ( M ,  BI,. ® V) ) = H i+l (Z ,  V ® O ( k  ) ). I-1 

In particular, each cohomology group is finite dimensional. We could sup- 
pose that 11,1 is quaternionic Kfihler and that I," is Hermitian, in which case 
the complexes are elliptic--the adjoint of  Bk ® I" is simply B2,+2-k ® VBand  
the eohomology groups are finite dimensional in the usual way. In any event, 
the index of Bk ® V is well defined on M and 

indexBk ® V = - i n d e x H  i+ l (Z, V ® 0 (k))  

= - [ t d ( O z ) . c h V ®  O ( k ) ] [ Z ]  

by the Hirzebruch-Riemann-Roch formula. 
To reduce this to an expresion evaluated on M recall that 

H*(Z ,Z)  = H*(M,Z)[ ' . . ] / (z  2 + cl ( H ) z  + c2(H)),  

so we should evaluate the coefficient of -- in td (Oz)  (when reduced by 
the relation). The simplest situation occurs when c l (H)  = c2(H) = 0; for 
instance, H may be trivial, as in the hyper-K~ihler or hypercomplex cases. (In 
the Kfihler case, at least c2(H) = 0 since det H = 0.) 
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The pull back n ' E  is holomorphic and 

0---. 0 ( 2 )  ---. Oz ~ n ' E  ® O ( l  ) ~ 0 

is exact: n ' E  ® O (1) is the normal bundle to the fibres of  ft. 
Consider the hyper-K/4hler case. Then E is an Sp(n) bundle (induced by 

the self-representation) and weights of  sp (n) give rise to characteristic classes 
on M. Label the weights of  the self-representation as 

XI ,  X2, • . . ,  X n ,  - - X n ,  . . . .  - - X 2 ,  - - X  l . 

(That both =kxi appear is a consequence of  the self-duality of the representa- 
tion.) These give characteristic classes on 3t,  which we label similarly. Define 
a formal polynomial on characteristic classes by 

t 0 ' )  = y / ( 1  - e - Y ) .  

Then the multiplicative property of  the Todd genus td means that 

11 

td(Oz ) = t (2z)  1-'[ t ( z  + x,  ) t ( z  - x,  ). 
i = l  

Integration of  a cohomology class on Z over the fibres of  n corresponds to 
finding the coefficient of  z in that class. Accordingly, we should compute the 
Taylor expansion of  the above formula. We write 

where 

d rl ?i 

d---z~ 1"-[ t ( z  + x i ) t ( z -  xi)l==0 = K 1-[ t ( x i ) t ( x , )  = Ktd(E) ,  
i = !  i = l  

K = y]~ [ t ' ( x i ) / t ( x i )  + t ' ( - x i ) / t ( - x i ) ] .  
l 

What makes the hyper-Kiihler case easily computable is that quite remark- 
ably each summand in K simplifies to 1 so that 

t d (Oz)  = (1 + z)(1 + n z ) t d ( E )  = [1 + (n + l ) z ] t d ( E ) .  

This proves 

Proposition 17. I f  M is hyper-Kiihler and V is quaternionic then 

i n d e x B k ( V )  = ( k -  n - 1 ) c h ( V ) t d ( E ) [ M ] .  [] 
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As a check, if k = n + 1 then index Bk(V)  = 0, as it should since the 
complex B,+i (V) is self-adjoint. 

Lemma 18. I f  M is a 4n dimensional irreducible compact hyper-Kiihler manifoM 
[so its holonomy is precisely Sp(n)] then t d ( E ) [ M ]  = n + 1. [] 

This is well known [7], for a hyper-K/ihler structure is equivalent to the 
existence of a non-degenerate holomorphic two-form oJ (i.e., a skew form on 
E which with a skew form on H gives the complexification of the metric). 
Powers of this form give sections of 12 2r for each r. Irreducibility implies these 
are all such sections, up to scale. For the trivial representation occurs exactly 
once in each even skew power of the self-representation of Sp(n), and never 
in the odd powers, whilst any holomorphic form is covariant constant. Thus 

H°(M, /2  ~)  = C and H ° ( M , ~  2r+l )  = 0, 

which gives the lemma, since M is K~aler. 
Thus we deduce: 

Proposition 19. I f  M is a 4n dimensional irreducible compact hyper-Kiihler 
man(foM then 

indexBk = ( k -  n - l ) (n  + 1). [] 

So quaternionic cohomology is non-trivial. 

Thanks to Simon Salamon and Claude LeBrun for several conversations. 
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